Poster MS6

A Novel Supercritical Fluid Deposition Process for Sol-Gel Preparation of Silica-Based Membranes

Christian GUIZARD a , Martin DROBEK a , Véronique DURAND b , Maxime DUCHATEAU c , Audrey HERTZ c , Stéphane SARRADE c , Anne JULBE a

^aCNRS, Montpellier, FRANCE; ^bTAMI Industries, Nyons, FRANCE; ^cCEA, Marcoule, France

⊠christian.guizard@univ-montp2.fr

A novel "On-Stream Supercritical Fluid deposition" (OS-SFD) process has been investigated in this work coupling the sol-gel chemistry and a filtration/compression-based deposition method in supercritical CO_2 (sc- CO_2), for the production of uniform membranes on/in porous tubular supports. The versatility of this process allows both the direct formation of thin coatings on porous tubular membrane supports but also their internal modifiction. An attractive on-line control of the deposition process was operated by recording the transmembrane pressure evolution during membrane formation. Silica membranes were directly deposited on macroporous supports (155 mm long α -alumina support coated with a 200 nm pore size internal layer) from TEOS derived sols dissolved in sc- CO_2 and transported to the internal layer of the support where condensation/gelation and deposition occured.

The optimized crack-free silica membranes prepared at 50°C have a compact microstructure and exhibited a thermal stability up to 400°C. A second deposition run on overheated membranes allowed to recover a molecular sieving behaviour with a thermally activated transport for Helium up to 350°C. These promising results demonstrate the potential of this novel method for the preparation of uniform molecular sieve membranes deposited directly on macroporous supports with virtually zero waste.

Acknowledgements

This research has been funded by French FUI, the region Languedoc-Roussillon and OSEO Innovation under grant agreement N°092906408 EJ N°5728 (MEGA project).